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The very first attempt to devise an algo-
rithmic language  . . .  but the proposal never
attained the consideration it deserved.

Heinz Rutishauser (1967)

Plankalkül was an attempt by Konrad Zuse in the
1940’s to devise a notational and conceptual system for
writing what today is termed a program. Although this
early approach to a programming language did not lead to
practical use, the plan is described here because it con-
tains features that are standard in today’s programming
languages. The investigation is of historical interest; also,
it may provide insights that would lead to advancements in
the state of the art. Using modern programming terminol-
ogy, the Plankalkül is presented to the extent it has been
possible to reconstruct it from published literature.
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Preface

In May 1945, Konrad Zuse, Berlin-born inventor and co n-
structor, who had arrived with his relay computer Z4 at the
little village of Hinterstein in the Allgäu Alps, found himself
immobilized by the postwar situation and prevented from
pursuing his business. He thus found time to resume his 1943
studies1 on how to formulate data processing problems. Zuse
understood and used the German word Rechnen, to compute,
in the most general sense when he wrote, “ Rechnen heisst:
Aus gegebenen Angaben nach einer Vorschrift neue Angaben
bilden”2.

He used Angaben for data and Vorschrift for algorithm.
Not having at his disposition the word Programm, he called a
program Rechenplan. The notational and conceptual system
of expressing a Rechenplan he called Plankalkül.

The Plankalkül, as a remarkable first beginning on the
way to higher programming languages, deserves a place in
the history of informatics, Although this early attempt to d e-
velop a programming language did not lead to practical use, it
is nevertheless surprising to what extent the Plankalkül al-
ready contains standard features of today’s programming la n-
guages.

We are led to an investigation of Zuse’s Plankalkül not
only because of historical interest, but also because the nece s-
sary critical reflection on the state of the art with its possible
gaps and weaknesses may gain from such a study. In partic u-
lar, the widespread ignorance about the Plankalkül should be
diminished.

Using as a basis modern terminology in programming, 3

we will describe the Plankalkül as far as it can be reco n-
structed from the published literature.

                                                                                                
1 “Ansätze einer Theorie des allgemeinen Rechnens”, a planned Ph.D. dis-

sertation. See [Z70, p. 112].
2 See [Z49].
3 In terminology and notation, we follow ALGOL 68. Whatever position one

may have with respect to ALGOL 68, the difference from other reputable termi-
nologies and notations, such as the one Hoare, Wirth and Dijkstra prefer, is not
so great that it would hinder communication.
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1. Data Structure

The only primitive objects in the Plankalkül are of the
mode bool (or bit), which is denoted by S0 4; they are called
Ja-Nein-Werte. Composite objects are built up recursively, in
particular arrays of arbitrary dimensions and records. For
example, the array modes

[0 : n - 1] bool and [0 : m - 1, 0 : n - 1] bool

are denoted by

n × S0 and m × n × S0, respectively.

If a variable indication5 (variables Strukturzeichen) σ or a
constant indication S2 is used to denote the first of these two
modes, then the second can be denoted by

m × σ or m × S2, respectively.

There is also the possibility of using the abbreviated notation

S1 · n or S1 · 8

instead of

n × S0 or 8 × S0.

In this case we have a new mode bits of word length n or 8,
respectively; the array, however, can still be subscripted.

A record of, say, two components, which are denoted by
some variable or constant indications σ, τ or A2, A3, is
specified by

(σ, τ) or (A2, A3).

Here, too, subscripts will be used for the selection of comp o-
nents; they always start with zero.

Zuse says Strukturen for structured values and their corr e-
sponding modes; he says Art for the conglomerate consisting
of a Struktur together with its pragmatic meaning ( Typ) and a
possible restriction (Beschränkung), which says which of the
elements of a certain structure are meaningful, For example,
objects of the structure

S1 · 4  (tetrades)

may have the pragmatic meaning “decimal digit” and the
restriction to the first 10 of the 16 lexicographic possibilities.

A S
B3 1 4

3= ⋅





expresses that S1 · 4 is subjected to the restriction B3.6 Zuse
calls objects Angaben, which pretty closely correspond to
“data”.

Figure 1 shows an illustrative section from [Z59].

2. Standard Denotations

Standard denotations for Boolean objects (S0) are
                                                                                                

4 In [Z49] a small o is used.
5 [Z49, p. 447]; see also Section 9
6 For a chess example such a restriction is defined in [Z59, p. 72] by: “A3 is

restricted to 13 possibilities: 12 binds of chessmen and 0 for unoccupied”.

L and 0

for bit sequences (for example S1 · 4)7

LL00, L0LL.

For integers and numerical-real objects, instead of bit s e-
quences, conventional figures can also be used.8

For the standard denotation of more general, composite
objects, a denotation is used which is now conventional for
input and output: The standard denotations of the components
of composite objects are listed in the specified order, such that
the additional mode indication for the object allows one to
form the decomposition uniquely. For clearness only, a sp e-
cial separation mark (semicolons instead of commas) is used
for the separation of composite objects.

3. Free Choice of Denotation

For all objects, freely chosen identifiers ( Bezeichnungen) may
be introduced; for example, a standard denotation can be a s-
sociated (zugeordnet) with an identifier (see Section 6) such
that both possess the same object as their value (Wert).
In a Rechenplan P, i.e. in a program or a subroutine (see Se c-
tion 9), an identifier is a letter followed by a number. The
letter is V, Z, R, or C, depending on whether the object in
question is used as an input parameter ( Variable), intermedi-
ate value (Zwischenwert), result parameter (Resultatwert), or
as a constant in P. The distinguishing number (Nummer) is
attached to the letter in the line below. The letter classifies the
objects.

Examples:
V, Z, Z, R
0 0 1 0

Finally, programs and subroutines have their own identifiers
like

P12, P3-7

the number following the letter P being a program index
(Programm-Index), in the form of a component-subscript (see
Section 4). The second example denotes “the program 7 of the
program group 3”. Thus, Zuse has arrays of programs and a
corresponding block structure. He derives from this a system
to denote the results of subroutines in external use; for exa m-

ple, the result R
0  of a subroutine P17 is external to P17 cha r-

acterized by the program index 17, i.e. by

R17
0
which also involves a call of P17 (see Section 8).

                                                                                                
7 [Z59, p. 70]. From a remark in [Z70, p. 157], one can infer that Zuse al-

ready during his Berlin period, that is before 1944, used L and 0, which he called
Sekundalziffern (see also [Z70, p. 68] in his diary entry of June 20, 1937).

8 It should be noted that Zuse already used floating point computation.
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4. Subscripting

The selection of a component is achieved with the help of
a component-subscript (Komponenten-Index), that is the de-
notation of a number (simple subscript) or a sequence of
numbers (multiple subscript). The component-subscript is
written immediately under the identifying number of the co r-
responding composite object.

Let, for example, V
0  denote an array of the mode

l m S n× × ⋅1 , then

( )
V

i l
i
0 0 ≤ <

selects its ith component, a subarray of the structure
m S n× ⋅1 , while

( )
V

j m
i j
0 0 ≤ <
⋅

selects the jth component of 
V

i
0 , a list of the structure S n1 ⋅ ,

and finally

( )
V

k n
i j k
0 0 ≤ <
⋅ ⋅

selects the kth component of 
V

i j
0
⋅

, a single bit. In today’s no-

tation, this corresponds to V0[i], V0[i,j], V0[i,j,k].

Figure 1.

Ein Beispiel aus der Schachtheorie

Als Beispiel sei kurz auf die Schachtheorie eingegangen. Zunächst
ist der Aufbau der auftretenden Angabenarten interessant.

S0 Ja-Nein-Wert
S1·n n-stellige Folge von Ja-Nein-Werten

A1 S1 · 3 = Koordinate
A2 2 × A1 = Punkt

(z. B.: L00, 00L entspricht Punkt e2 in übli-
cher Darstellung)

A3 ( )S
B
1 4

3
⋅ = Besetzt-Angabe

(z. B.: 00L0, Weißer König)
A4 (A2, A3) = Punkt-besetzt-Angabe

(z. B.: L00, 00L; 00L0 „Punkt e2 mit weißem
König besetzt”)

A5 64 × A3 = Feldbesetzung:
C5 Anfangslage
(Aufzählung der Besetzung der 64 Punkte in
fester Reihenfolge)

A6 64 × A4 = Feldbesetzung mit Punktangabe,
C6 Anfangslage

A7 12 × S1 · 4 = Anzahl der Steine;
C7 Anfangslage
(Gibt an, wieviel Steine von jeder Sorte auf
dem Feld sind, z. B. für Bewertungsrechnun-
gen wichtig).

A9 (A5, S0, S1 · 4, A2)
= Spielsituation;
C9 Anfangssituation
(Feldbesetzung [A5]; Angabe, ob Weiß oder
Schwarz am Zuge [S0]; Angaben über Ro-
chade-Möglichkeiten [4 Ja-Nein-Werte]
Angabe der Punkte mit den Möglichkeiten,
„en passant” zu schlagen).

A10 (A6, S0, S1 · 4, A2)
= Spielsituation mit Punktangabe;
C10 Anfangslage

A11 (A2, A2, S0) = Zugangabe
(zwei Punktangaben, gesetzt von ... nach ...
Ein Ja-Nein-Wert „Es wird geschlagen”).

Pages 69,70,71 from “Über den Plankalkül” by Konrad Zuse, in
Vol. 1, 1959, of Elektronische Rechenanlagen , Verlag R. Olden-
bourg, Munich. Reprinted by permission of the publisher.
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Figure 2.
Neben der Hauptzeile, welche die Formel im wesentlichen in der
traditionellen Form enthält, wird eine zweite Zeile (V) für den Va-
riablen-Index, eine dritte für den Komponenten-Index (K) und eine
vierte für den Struktur-Index (S) eingeführt. Die letztere braucht,
strenggenommen, nicht immer ausgefüllt zu werden, dient aber we-
sentlich zur Erleichterung des Verständnisses einer Formel. Die
Zeilen werden durch Vorsetzen der zugeordneten Buchstaben (V, K,
S) gekennzeichnet.

Beispiele:
V

V
K
S m n

3

2 1× × ⋅

Die Variable V3 ist eine Paarliste von
m Paaren der Struktur 2 · 1 · n und soll
als Ganzes in die Rechnung eingehen.

V
V
K i
S n

3

2 1× ⋅

Von der Paarliste V3 soll das i.Paar
genommen werden (Struktur 2 · 1 · n).
(I kann dabei ein laufender Index sein.)

V
V
K i
S

3
0

1 0
⋅
⋅

Von dem i.Paar der Paarliste V3 soll
das Vorderglied (erstes Element des
Paares) genommen werden (Struktur
1 · n).

V
V
K i
S

3
0 7

0
⋅ ⋅

Von dem Vorderglied des i.Paares der
Paarliste V3 soll der Ja-Nein-Wert
Nr. 7 genommen werden (Struktur S0 =
Ja-Nein-Wert).

Beim Beispiel des Stabwerkes bedeutet für i = 4:

V
3

die gesamte Paarliste des Stabwerkes

V
3
4

die Kennzeichnung des Stabes 2-4
(4. Paar der gegebenen Liste)

5. Zuse’s Two-Dimensional Notation

The form of denotation with a “main line” and “index
lines” V and K for variable-number and component-subscript,
respectively, is supplemented by an optional comment line S,
in which the structure or mode of the value in question can be
noted. To this end, the notation of Section 1 is used; Zuse
calls these indications Struktur-Indizes.

Examples are given in Figure 2, an illustrative section
from [Z59, p. 69].

The explicit marking of the lines by prefixed letters V, K,
and S, allows one to omit empty K-lines. Furthermore, the
prefix S in the mode denotation can be dropped. Thus,

S S n m S n S S1 1 0 2⋅ × ⋅

can be shortened to

S n m n1 1 0 2⋅ × ⋅ .

Moreover, Zuse allows the abbreviation of

S A A S A1 2 0 3

by

S 1 2 0 3

(using A0 synonymously with S0)
Furthermore, variable component subscripts can be used

[Z70, p. 123], for example by the help of an intermediate
value in the form

V
K
S

V Z

m n n

−−

−−−−−−
× ⋅ ⋅

0 1

1 1

|
|
|

with the meaning of V0[Z1] in today’s notation. (Note that Z1
is of structure S1·n; that is, the integer corresponding to the
bit sequence Z1 is used as subscript, and a component of
structure S1·n is selected from V0.)

6. Assignment and Identity Declaration

The most important feature for the construction of pr o-
grams is the assignment (Rechenplangleichung), expressed by
means of the Ergibtzeichen ⇒.9 For example, the assignment

V
S

Z Z

n n n

+ ⇒

⋅ ⋅ ⋅

1
1 1
1 1 1

means to augment the integer intermediate value Z1 by 1,
while

( )
V
S

V V R, ⇒
0 1 0

2σ σ σ
means the composition of the values V0 and V1 to a composite
value, which is denoted by R0.

If in a program more than one assignment to the same r e-
sult or intermediate value variable occurs, then the
(dynamically) first assignment is to be interpreted as an
(initialized) identity declaration for a variable, while all ot h-
ers are ordinary assignments. This would give the genuine
concept of a variable. On the other hand, the initialization of
an input parameter in connection with a subroutine call, 10 as
well as the initialization of constants, can be interpreted to be
an ordinary identity declaration. However, these fine distin c-
tions are reflected neither in the notation nor in the explan a-
tion of the semantics [Z59, p. 70]. Nevertheless, they have

                                                                                                
9 Originally, Zuse [Z49] introduced the >=, shaped equality sign. The arrow-

like sign ⇒ is used in [Z59], after Rutishauser had helped to propagate it. In
[R52], Rutishauser used in typescript the sign ==> . At the Zürich ALGOL
Conference 1958, the sign := was introduced under strong pressure from the
American participants. The European group wished to use Zuse’s sign.

10 It cannot be excluded that Zuse considered the input parameters to be
genuine variables whose values can be changed during the subroutine. This is

indicated by an isolated occurrence of 
( , )V V V⇒  in [Z59],
5 6 7
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strongly influenced Rutishauser’s ideas, as seen from ALGOL
68.

The usual arithmetic and Boolean operations are provided
for, and they allow one to form expressions ( Ausdrücke) in
connective formula notation. 11 Besides, comparison opera-
tions like =, ≠, ≤, with Boolean values as results, can be used.
For arithmetic operations, objects of the mode bits (denoted
by S1·n) are interpreted as numbers in direct (lexicographic)
coding.

Der Operator x hat große Vorteile bei
der systematischen Untersuchung einer
sich evtl. In ihrem Umfang laufend än-
dernden Liste auf Glieder einer bestimm-
ten Eigenschaft und Verarbeitung derse l-
ben.

7. Further Operational Features

Apart from the possibility of selecting record and array
components by (component) subscripts, certain operations
from the predicate calculus are used to test components with
respect to a specified property, with the result of selecting
them or of obtaining a Boolean value. In this respect, the
Plankalkül surpasses the potentialities in today’s progra m-
ming languages, including ALGOL 68.

Zuse uses both the “existence” and the “all” operator, and
in particular the operator :

( )( )x x V R x∈ ∧
0

means “The next component of V0, for which the property R
holds.”

The property R, in the notation R(x), is expressed by
means of a computational rule which gives a Boolean value
(Ja-Nein-Wert), or of a result parameter of a suitable subro u-
tine (see Section 8).

It is clear, that procedures can be defined in, say, ALGOL
68, which have the above effect. But it may be worthwhile to
see whether Zuse’s constructions could be introduced as
original concepts in high level languages. See also [BG72].

8. Statements and Subroutine Calls

Statements are what Zuse calls Planteile. In particular, as-
signments are statements. Other statements, which we shall
discuss, are conditional statements and repetitive statements.
There is also a compound statement, formed with the help of
parentheses. In order to separate statements, as well as the
line marks (see Section 5), a vertical bar is used.

Conditional statements are formed with the help of the
Bedingt-Zeichen →⋅  (or →⋅ ) in the following form

B A→⋅ ,

                                                                                                
11 [Z49, p. 447]; “The Ergibt-Zeichen >= joins an expression which is to be

calculated (left) with a result (right).” According to Zuse such expressions mean
computational rules (Rechenvorschriften).

where the condition (Bedingung) B is an expression with
Boolean value, and A an arbitrary statement. The elaboration
of this conditional statement (bedingter Planteil) begins with
B and ends with B or is continued with A, depending on
whether B produces the value 0 = nein or L = ja. An alterna-
tive for A in the first case cannot be specified.

The following example of a repetitive statement, that is
initiated by the letter W, shows an application of the -
operation of the preceding section:

( ) ( )( )
V
S

W x x V x V Z

m

R R Z Rµ

σ σ σ σ

∈ ∧ ≠ ⇒ ∧ ⇒











0 1 0
17

0 1 0 0
0 0 0

The elaboration of this Wiederholungsplan starts with the
first assignment. The left-hand side formula of this assig n-
ment produces at each elaboration the next component V0[i]
which is different from V1, provided it exists. In this case, the
following statement is elaborated and the process starts again.
If, however, no component is found then Z0 is unchanged and
the elaboration of the repetitive statement is finished.

In the second assignment of this example, where an in i-
tialization of R0 is presupposed, R171(Z0) is the call of a sub-
routine P17 (see Section 9), which is specified to have one
input parameter and a result parameter R1 (see Section 3).
The elaboration of this call means the identification of the
actual parameter Z0 with the formal input parameter, and
following this, the elaboration of P17. The value of the call is
the value which is obtained by R1.

If it was initialized by L, R0 obtains thus, when the repet i-
tive statement is finished, the value of the conjunction of all
R171(x) where x is from the set of all elements of V0 that are
different from V1.

9. Programs

Both programs and subroutines in the Plankalkül are ex-
pressed in the form of procedures (Rechenpläne); i.e. they are
prefaced by a specification part (Randauszug), which specifies
the parameters as being input parameters or result parameters
together with their modes. The computational rule proper is
then described in the body (Anweisungsteil), which consists of
a sequence of statements. The end is marked by a symbol
FIN.12

A call requires that the actual parameters have consistent
mode. The subroutine P17 that was called in the preceding
section may begin with the following specification part

( ) ( )P R V R R
V
S

17
0 0 1

0

⇒ ,

where V0 is an input and R0, R1 are result parameters. The
body must contain assignments to R0 and R1. If it contains
intermediate values, then they are not readable directly from
outside of P17.
                                                                                                

12 The example in [Z59, p. 71] ends, however, with an expression ε instead
of ε ⇒ R0 FIN, where R0 is the only result parameter.
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Mein ‘Plankalkül’ war doch inzwischen
längst veraltet.

K. Zuse  (1970)

10. Algol 68 Translation of Some Plankalkül Programs

It should not be forgotten that Zuse did not only invent the
Plankalkül, but that he used it to formulate some nontrivial
programs of the nonnumerical kind (he called them logis-
tisch-kombinativ) in order to demonstrate the potentialities of
computing. The programs are by all means nontrivial for the
year 1945 and more ambitious than the first task steps von
Neumann did with his Gedanken machine (cf. [K70]). To
illuminate this, we give in the following ALGOL 68 transcrip-
tions of program examples from [Z49] and [Z59].

a. Syntax Checking for Boolean Expressions

A typical application of the Plankalkül [Z49, p. 446] con-
tains a procedure for the syntax check of Boolean expressions.
Zuse starts from the observation:

Such expressions contain the following symbols: variable symbols,
negation symbols, operation symbols, parentheses symbols, and
space symbol that is needed for the separation of expressions. The
symbols in question are coded in bit sequences.

Figure 3.

V
S

R V R

m

V
K
S

Az V R V Z

n

V
K
S

V
S

V
S

W
x x V x V

m

Z Sq Z Z R

Kla Z Klz Z

R Z Z

( )

( ) &

& ( , ) &

( ) ( ) ( ) ( )

&

⇒

⇒ ⇒ ⇒

∈ ≠

















⇒ ⇒

→⋅ + ⇒ →⋅ − ⇒

≥ ⇒ ⇒







0 0
0

0
0 0 0 0
0 0

0 1

0 0
0

1 0 1 0

0

1 1
1 1

0

0 1 0

0

σ
ε

σ σ σ

µ

σ σ σ σ σ σ

ε ε ε ε

σ σ

ε

σ σ








































⇒ = ⇒
V
S

Sz Z R R( ) & &ε

σ

0
0 0 0

0 0

In the procedure (Figure 3), σ denotes the structure of
these 8-bit sequences, and mσ with arbitrary m ≥ 1 denotes
the symbol sequences that are to be investigated. A call of the
procedure with a (coded) symbol sequence x as its actual pa-
rameter means to test the predicate
Sa(x) : «x is a ‘meaningful expression’, i.e. a (syntactically correct)
Boolean expression»
This predicate is introduced recursively by:

(i) A variable symbol is a meaningful expression.
(ii) A meaningful expression, prefixed by a negation symbol,

yields a meaningful expression.
(iii) Two meaningful expressions, connected by an operation sym-

bol, yield a meaningful expression.
(iv) A meaningful expression, put in parentheses, yields a mean-

ingful expression.

To transform this definition into an algorithm, Zuse defines,
now for symbols x, the auxiliary predicates:
Va(x) : «x is a variable symbol»
Op(x) : «x is operation symbol»
Neg(x) : «x is negation symbol»
Kla(x) : «x is opening parenthesis»
Klz(x) : «x is closing parenthesis»
and furthermore the predicates:

Az(x) : Va(x) ∨ Neg(x) ∨ Kla(x)
Sz(x) : Va(x) ∨ Klz(x)
Sq(x,y) : (Sz(x) ∧ ¬Az(y)) ∨ (¬Sz(x) ∧ Az(y))



684 Communications July 1972
of Volume 15
the ACM Number 7

Figure 4.

„Der weiße König kann einen Zug machen, ohne dabei in Schach zu
kommen.”

P 148 ( )
( )

( ) ( L 0)

( )

( ) ( ) ( , ) ( )

.

( ) ( , , )

.

R V R
V
A

x
V
K
A

x V x Z

Ex
V
K
A

V
K
A

x V R Z x x x

Ey y V y R V y x

⇒

∈ ∧ =

















⇒

∈ ∧ ∧ = ∨

∧ ∈ ∧ ∧



























148
0 0
5 0

1

4

0
1

5 3

0

4

2

4

17 0
0 0

0 0 1 1 3
4 5 2 2 3 0

4

128
0 0

1 3 0 0
5 0 5 2 2
























( )

( )

3

4

Die hierbei benutzten Unterprogramme sind:

R V V
V
A

17
0 1
2 2

( , )
„Die Punkte V0 und V1 sind benachbart.”

R V V V
V
A

128
0 1 2
5 2 2

( , , ) „Bei der gegebenen Feldbesetzung V0 ist
der Zug von Punkt V1 nach Punkt V2

erlaubt.”

Das Programm R128 ist verhältnismäßig kompliziert, da untersucht
werden muß, welcher Stein auf Punkt V1 steht, ferner ob der Punkt
V2 zu V1 in einer solchen geometrischen Relation steht, daß der auf
V1 stehende Stein dorthin setzen kann, und schließlich muß unter-
sucht werden, ob dazwischenliegende Punkte vorhanden sind und ob
diese frei sind.

Erklärung der Formel P148 in Worten:

(1) ist der Randauszug, der besagt, daß über eine Feldbesetzung
(A5) eine Aussage gemacht werden soll.

(2) Diejenige Punkt-Besetzt-Angabe (x), welche in der Liste der
Spielbesetzung (V0) enthalten ist, deren Komponente Nr. 1 =
L0 ist (Zeichen für König in der Numerierung der Steintypen),
ergibt den Zwischenwert Z0.

(3) Es gibt in der Liste der Spielbesetzung (V0) einen Punkt (x),
der zu Z0 (Punkt, auf dem der König steht) benachbart ist und
der unbesetzt (= 0) oder mit einem schwarzen Stein besetzt ist
(x1·3) (das bedeutet Ja-Nein-Wert Nr. 3 der Besetzt-Angabe x1;
dieser charakterisiert schwarze Steine).

(4) Es gibt keinen weiteren Punkt, der mit einem schwarzen Stein
besetzt ist, welcher nach Punkt x gesetzt werden kann.

He then postulates:

1. The first symbol x has to fulfill Az(x)
2. Two symbols x, y following each other have to fulfill Sq(x, y)
3. The last symbol x has to fulfill Sz(x).

Moreover, he uses the two parentheses counts:

4. The number of opening parentheses has to be equal to the num-
ber of closing parentheses.

5. For any segment of the symbol sequences, the number of open-
ing parentheses must not be smaller than the number of closing
parentheses.

The program (Figure 3) checks these conditions:  serves
for the special case of condition 1.  is an initialization for
the repetitive statement which checks condition 2 and the
count 5. Condition 3 for the final case is then checked in 
and the count 4 after this. The program, by the way, contains
mistakes: for example, a count corresponding to  is missing
for the first symbol. More seriously, the condition x ≠ V0[0]
in  should be read as x = V0[i] ∧ i ≠ 0.

For a direct transliteration of Zuse’s (corrected) procedure,
we assume first that suitable Boolean procedures Va(x),
Op(x), etc., are declared. Using these predicated, we obtain in
ALGOL 68 (the encircled numbers refer to Figure 3):

proc Sa = ([0 : either] bits V0) bool : begin
bits Z0 := V0[0]; bool R := Az(Z0);
int eps := 0; if Kla(Z0) then eps := 1 fi;
for i to upb V0 while Rdo begin
bits Z1 := V0[i];
R := R ∧ Sq(Z0,Z1);
if Kla(Z1) then eps +:= 1 fi;
if Klz(Z1) then eps –:= 1 fi;
R := R ∧ eps ≥ 0;
Z0 := Z1 end;
R ∧ Sz(Z0) ∧ eps = 0 end

(Of course, in ALGOL 68 there exist possibilities for a more
efficient formulation.)

b. Checking a Move of the White King

Figure 4 shows one of the auxiliary procedures for a chess
program formulated by Zuse in Plankalkül notations [Z59, p.
71]. The modes that are found in the program are seen from
Figure 1 (note that A5 and A6 are to be interchanged). Zuse’s
procedure, directly transliterated into ALGOL 68 (the numbers
1 to 4 correspond to those in Figure 4) reads as follows:

mode A1 = int co coordinates 1, ··· , 8 instead of
0, ··· , 7 corresponding to [0:2] bool
co,

A2 = [1:2] A1 co point co,
A3 = int co occupation by 1, ··· , 6 (9,  ··· , 14)

for white (black) Q, K, R, B, S, P; in-
stead of 0 for unoccupied co,

A4 = struct (A2 point, A3 occ) co occupation of the
point co,

A5 = [1:64] A4 co occupation of the board co;
proc R17 co adjacent co = (A2 V0,V1) bool ;

abs (V0[1] - V1[1]) ≤ 1 ∧ abs (V0[2] - V1[2]) ≤ 1;
proc R128 co move permissible co = (A5 V0, A2 V1, V2)

bool ;
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«corresponding to the occupation occ of V 0[i] that
belongs to V1, where point of V0[i] = V1, the move
from V1 to V2 is geometrically permissible » ∧
«intermediate fields, if any, are free»;

1) proc R148 co move 2 (wK) permissible co =
(A5 V0, ref A2 px) bool :
co additional result parameter px for reference to ta r-
get co
begin bool c co if already checked, px refers to pe r-

missible target co := false;
2) int i := 1; while occ of V0[i] ≠ 2 do i +:= 1; A4 Z0

= V0[i];
3) for j to 64 while ¬c do

begin A4 x = V0[i]; px := point of x;
c := R17 (point of Z0, px) ∧ occ of x ≥ 8;

4) for k to 64 while c do
begin A4 y = V0[k];

if occ of y > 8 then c := ¬R128 (V0, point
of y, px) fi

end
end;
c

end

Trotzdem glaube ich, daß der ... Plankal-
kül noch einmal praktische Bedeutung be-
kommen wird.

K. Zuse  (1970)

Concluding Remarks

Altogether the Plankalkül turns out to be a highly devel-
oped programming language with structured objects that are
built from a single primitive mode of objects—the two Bo o-
lean values (Ja-Nein-Werte) 0, L. Conceptually, this is cer-
tainly advantageous, but the existing plurality of modes in
some predominant programming languages indicates the
practical weakness of this approach. Apart from this, the
Plankalkül shows many of the features of the programming
languages of the sixties, sometimes obscured by an unorth o-
dox notation, which disregarded some requirements of m e-
chanical processing as well as some of the common notational
habits. Some features—for example the structuring of o b-
jects—have only recently come into existing programming
languages; others have yet to come. In particular, consider a-
tion of the features mentioned in Section 7 could be reward-
ing.

To assess the Plankalkül historically, one has to compare
it with the flow diagram symbolism that originated at about
the same time in the United States. Zuse’s pioneering
achievement of the forties should not be diminished by certain
limitations, e.g. that the specification of modes is meant only
to be an informal help for the correct use (in particular with
respect to the parameters) of a procedure and not an intrinsic
part of the program, or that the explicit formation of all
modes from a single basic mode as well as the corresponding
notation, are clumsy, or that questions of implementation
have not been tackled.13

                                                                                                
13 K. Zuse in [Z70, p. 128]: “Der Plankalkül hätte noch ‘compiler-gerecht’

zugeschnitten werden müssen.”

It is also interesting to indicate the features that are gene r-
ally accepted today but which were not contained in the
Plankalkül. Here we should first mention the reference co n-
cept—it is not even obvious whether ⇒ means an identity
declaration or an assignment. Names or references as objects
are also missing in ALGOL 60; in this respect the relation be-
tween Plankalkül and Rutishauser’s influence 14 on ALGOL 60
is obvious. The essential restriction to numerical objects in
ALGOL 60 was, as one knows today, not critical; the intention
was to make the address calculation not accessible to the pr o-
grammer, and this was motivated by the desire for error-free
programming as well as by awareness of the frequent ma l-
function of machines in those years. 15 Thus, at that time,
there was not enough justification to open, in ALGOL 60, the
Pandora’s box of manipulable names—i.e. addresses. 16 It was
therefore left to Wirth to introduce this later into higher pr o-
gramming languages, and it can now be found in ALGOL 68 as
well as in some “lower level languages”.
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